Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 66: 101605, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165811

RESUMO

OBJECTIVE: Disturbances in NAD+ metabolism have been described as a hallmark for multiple metabolic and age-related diseases, including type 2 diabetes. While alterations in pancreatic ß-cell function are critical determinants of whole-body glucose homeostasis, the role of NAD+ metabolism in the endocrine pancreas remains poorly explored. Here, we aimed to evaluate the role of nicotinamide riboside (NR) metabolism in maintaining NAD+ levels and pancreatic ß-cell function in pathophysiological conditions. METHODS: Whole body and pancreatic ß-cell-specific NRK1 knockout (KO) mice were metabolically phenotyped in situations of high-fat feeding and aging. We also analyzed pancreatic ß-cell function, ß-cell mass and gene expression. RESULTS: We first demonstrate that NRK1, the essential enzyme for the utilization of NR, is abundantly expressed in pancreatic ß-cells. While NR treatment did not alter glucose-stimulated insulin secretion in pancreatic islets from young healthy mice, NRK1 knockout mice displayed glucose intolerance and compromised ß-cells response to a glucose challenge upon high-fat feeding or aging. Interestingly, ß cell dysfunction stemmed from the functional failure of other organs, such as liver and kidney, and the associated changes in circulating peptides and hormones, as mice lacking NRK1 exclusively in ß-cells did not show altered glucose homeostasis. CONCLUSIONS: This work unveils a new physiological role for NR metabolism in the maintenance of glucose tolerance and pancreatic ß-cell function in high-fat feeding or aging conditions.


Assuntos
Diabetes Mellitus Tipo 2 , NAD , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Glucose , Camundongos Knockout , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Compostos de Piridínio , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Secretoras de Insulina/patologia , Envelhecimento
2.
Nutrients ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807932

RESUMO

Through evolution, eukaryote organisms have developed the ability to use different molecules as independent precursors to generate nicotinamide adenine dinucleotide (NAD+), an essential molecule for life. However, whether these different precursors act in an additive or complementary manner is not truly well understood. Here, we have evaluated how combinations of different NAD+ precursors influence intracellular NAD+ levels. We identified dihydronicotinic acid riboside (NARH) as a new NAD+ precursor in hepatic cells. Second, we demonstrate how NARH, but not any other NAD+ precursor, can act synergistically with nicotinamide riboside (NR) to increase NAD+ levels in cultured cells and in mice. Finally, we demonstrate that the large increase in NAD+ prompted by the combination of these two precursors is due to their chemical interaction and conversion to dihydronicotinamide riboside (NRH). Altogether, this work demonstrates for the first time that NARH can act as a NAD+ precursor in mammalian cells and how different NAD+ precursors can interact and influence each other when co-administered.


Assuntos
NAD , Niacinamida , Animais , Mamíferos , Camundongos , Niacinamida/análogos & derivados , Compostos de Piridínio
3.
FASEB J ; 35(4): e21456, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724555

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.


Assuntos
NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/efeitos dos fármacos , Homeostase , Humanos , Túbulos Renais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , NAD/genética , Mononucleotídeo de Nicotinamida/química , Traumatismo por Reperfusão
4.
Mol Metab ; 30: 192-202, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767171

RESUMO

OBJECTIVE: A decay in intracellular NAD+ levels is one of the hallmarks of physiological decline in normal tissue functions. Accordingly, dietary supplementation with NAD+ precursors can prevent, alleviate, or even reverse multiple metabolic complications and age-related disorders in diverse model organisms. Within the constellation of NAD+ precursors, nicotinamide riboside (NR) has gained attention due to its potent NAD+ biosynthetic effects in vivo while lacking adverse clinical effects. Nevertheless, NR is not stable in circulation, and its utilization is rate-limited by the expression of nicotinamide riboside kinases (NRKs). Therefore, there is a strong interest in identifying new effective NAD+ precursors that can overcome these limitations. METHODS: Through a combination of metabolomics and pharmacological approaches, we describe how NRH, a reduced form of NR, serves as a potent NAD+ precursor in mammalian cells and mice. RESULTS: NRH acts as a more potent and faster NAD+ precursor than NR in mammalian cells and tissues. Despite the minor structural difference, we found that NRH uses different steps and enzymes to synthesize NAD+, thus revealing a new NRK1-independent pathway for NAD+ synthesis. Finally, we provide evidence that NRH is orally bioavailable in mice and prevents cisplatin-induced acute kidney injury. CONCLUSIONS: Our data identify a new pathway for NAD+ synthesis and classify NRH as a promising new therapeutic strategy to enhance NAD+ levels.


Assuntos
NAD/biossíntese , NAD/metabolismo , Niacinamida/análogos & derivados , Animais , Linhagem Celular , Masculino , Camundongos , Niacinamida/metabolismo , Niacinamida/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool) , Compostos de Piridínio , Ratos
5.
Nat Commun ; 10(1): 4291, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541116

RESUMO

Supplementation with the NAD+ precursor nicotinamide riboside (NR) ameliorates and prevents a broad array of metabolic and aging disorders in mice. However, little is known about the physiological role of endogenous NR metabolism. We have previously shown that NR kinase 1 (NRK1) is rate-limiting and essential for NR-induced NAD+ synthesis in hepatic cells. To understand the relevance of hepatic NR metabolism, we generated whole body and liver-specific NRK1 knockout mice. Here, we show that NRK1 deficiency leads to decreased gluconeogenic potential and impaired mitochondrial function. Upon high-fat feeding, NRK1 deficient mice develop glucose intolerance, insulin resistance and hepatosteatosis. Furthermore, they are more susceptible to diet-induced liver DNA damage, due to compromised PARP1 activity. Our results demonstrate that endogenous NR metabolism is critical to sustain hepatic NAD+ levels and hinder diet-induced metabolic damage, highlighting the relevance of NRK1 as a therapeutic target for metabolic disorders.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatopatias/prevenção & controle , Niacinamida/análogos & derivados , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Animais , Glicemia , Dano ao DNA , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Predisposição Genética para Doença/genética , Intolerância à Glucose , Hepatócitos/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/patologia , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Niacinamida/genética , Niacinamida/metabolismo , Niacinamida/farmacologia , Compostos de Piridínio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA